首页> 外文OA文献 >Flexible Stereo: Constrained, Non-rigid, Wide-baseline Stereo Vision for Fixed-wing Aerial Platforms
【2h】

Flexible Stereo: Constrained, Non-rigid, Wide-baseline Stereo Vision for Fixed-wing Aerial Platforms

机译:灵活的立体声:约束,非刚性,宽基线立体视觉   固定翼高架平台

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a computationally efficient method to estimate thetime-varying relative pose between two visual-inertial sensor rigs mounted onthe flexible wings of a fixed-wing unmanned aerial vehicle (UAV). The estimatedrelative poses are used to generate highly accurate depth maps in real-time andcan be employed for obstacle avoidance in low-altitude flights or landingmaneuvers. The approach is structured as follows: Initially, a wing model isidentified by fitting a probability density function to measured deviationsfrom the nominal relative baseline transformation. At run-time, the priorknowledge about the wing model is fused in an Extended Kalman filter~(EKF)together with relative pose measurements obtained from solving a relativeperspective N-point problem (PNP), and the linear accelerations and angularvelocities measured by the two inertial measurement units (IMU) which arerigidly attached to the cameras. Results obtained from extensive syntheticexperiments demonstrate that our proposed framework is able to estimate highlyaccurate baseline transformations and depth maps.
机译:本文提出了一种计算有效的方法来估算安装在固定翼无人机(UAV)的柔性机翼上的两个视觉惯性传感器装置之间的时变相对姿态。估计的相对姿势可用于实时生成高度准确的深度图,并可用于低空飞行或着陆演习中的避障。该方法的结构如下:最初,通过将概率密度函数拟合到与标称相对基线变换的测量偏差来识别机翼模型。在运行时,关于机翼模型的先验知识与扩展的卡尔曼滤波器(EKF)融合在一起,并通过解决相对透视的N点问题(PNP)获得了相对姿态测量值,并通过两者测量了线性加速度和角速度惯性测量单元(IMU)牢固地安装在摄像机上。从广泛的综合实验中获得的结果表明,我们提出的框架能够估计高度准确的基线变换和深度图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号